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Abstract
Recent results on electromagnetic turbulence from gyrokinetic studies in different magnetic configurations are overviewed,
detailing the physics of electromagnetic turbulence and transport, and the effect of equilibrium magnetic field scale lengths.
Ion temperature gradient (ITG) turbulence is shown to produce magnetic stochasticity through nonlinear excitation of linearly
stable tearing-parity modes. The excitation, which is catalyzed by the zonal flow, produces an electron heat flux proportional to
β2 that deviates markedly from quasilinear theory. Above a critical beta known as the non-zonal transition (NZT), the magnetic
fluctuations disable zonal flows by allowing electron streaming that shorts zonal potential between flux surfaces. This leads
to a regime of very high transport levels. Kinetic ballooning mode (KBM) saturation is described. For tokamaks saturation
involves twisted structures arising from magnetic shear; for helical plasmas oppositely inclined convection cells interact by
mutual shearing. Microtearing modes are unstable in the magnetic geometry of tokamaks and the reversed field pinch (RFP).
In NSTX instability requires finite collisionality, large beta, and is favored by increasing magnetic shear and decreasing safety
factor. In the RFP, a new branch of microtearing with finite growth rate at vanishing collisionality is shown from analytic theory
to require the electron grad-B/curvature drift resonance. However, gyrokinetic modeling of experimental MST RFP discharges
at finite beta reveals turbulence that is electrostatic, has large zonal flows, and a large Dimits shift. Analysis shows that the
shorter equilibrium magnetic field scale lengths increase the critical gradients associated with the instability of trapped electron
modes, ITG and microtearing, while increasing beta thresholds for KBM instability and the NZT.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Numerical solutions of comprehensive gyrokinetic models for
toroidal magnetic confinement configurations have provided
an increasingly realistic picture of confinement-limiting
instabilities and turbulence. In particular there is a significant
and well-developed body of work devoted to understanding
electrostatic turbulence and transport at zero β, where β is
the ratio of plasma pressure to magnetic pressure. However,
finite-β regimes are intrinsically of interest because they lead
to increased fusion reaction rates, higher bootstrap current

fraction, and potentially other desirable properties. Our
understanding of turbulence and transport in magnetically
confined plasmas at finite β from gyrokinetic simulation is
less well developed than the zero-β case. The most well
known piece of phenomenology is the way the dominant
instabilities driving turbulence change character as β is
increased, with the kinetic ballooning mode (KBM) ultimately
supplanting the ion temperature gradient (ITG) and trapped
electron mode (TEM) instabilities above a critical β [1–5].
Less is known about saturation, in part, because it can
be difficult or computationally taxing to achieve realistic
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and physically meaningful saturated states from numerical
gyrokinetic models. However, what has been done, both with
gyrokinetics and other models, suggests intriguing differences
with zero-β cases, stemming from changes in instability
growth rates, zonal flow drive, flow residuals, and fluctuation
characteristics [6–9]. This paper offers an overview of recent
gyrokinetic studies that probe and highlight new and modified
physical effects operating at finite β. These effects relate
to the origin of magnetic field stochasticity at very low β,
the appearance of microtearing instabilities, the behavior of
flows in the presence of stochasticity, the saturation of finite-β
instabilities, and a consideration of the critical β-values for
these effects, and their dependence on magnetic geometry.

The kinds of issues that arise in microturbulence at finite
β are apparent from a consideration of past work. Most of
the work has been done for tokamak plasmas. However,
gyrokinetic modeling has shown that the same types of
microinstabilities appear in tokamaks, stellarators and the
reversed field pinch (RFP), with the dominant instability
dependent on details of the configuration and equilibrium. It is
well established that ion temperature gradient (ITG) instability
becomes weaker as β increases [10–12] with complete stability
in tokamaks typically at a critical β between 1% and 2% [13]
and in RFPs between 6% and 10% [14]. In the tokamak, above
the critical β for ITG stabilization, trapped electron mode
(TEM) instability may continue, with a growth rate that is quite
insensitive to β, while the kinetic ballooning mode (KBM)
appears at a fraction of the ideal β limit, with a large growth
rate that increases very strongly withβ [11]. A characterization
of the saturation of KBM has been lacking. Linearly unstable
microtearing modes (MTM) [15–18] also arise above a critical
β in simulations of discharges for standard tokamaks [19, 20],
spherical tokamaks [21–24], and the reversed field pinch (RFP)
[14, 25]. (For a review of microtearing modes see [26].) These
observations have been somewhat surprising, given earlier
theoretical indications of stability [27], but not altogether
unanticipated [21]. In nonlinearly saturated ITG turbulence,
zonal flow strength, as measured by its shearing rate, weakens
as β increases, but not as strongly as the reduction of growth
rate. The result is a saturation in which zonal flows play
a larger role in a relative sense as β increases [13, 28, 29].
However, there is also a phenomenon observed in gyrokinetic
simulation of ITG turbulence sometimes referred to as the high
β runaway, where above a critical β transport fluxes diverge
away from an apparently transient saturated level to very high
values [30–32]. For the Cyclone base case the critical β

for this phenomenon is a fraction (around 70%) of the KBM
instability threshold. Even at very low β values of order 0.1%,
magnetic fluctuations that lead to a stochastic field are observed
in simulations of ITG turbulence [33]. The magnetic flutter
transport from this field is small, but it rises quadratically as β

increases. The source of the stochasticity, given the low β and
predominant ballooning parity of ITG fluctuations has only
been understood recently in work described below [34, 35]. It
arises from a very general aspect of instability-driven plasma
turbulence, namely, that nonlinearity excites a large array of
damped modes in the scale range of the instability [36, 37].
It is important to understand the role of this phenomenon in
turbulence saturation and transport at finite β.

Because the study of large-scale stable modes in saturation
is still in its infancy, the physical details of saturation

mechanisms are still not well understood. Historically, most
saturation mechanisms have relied on damping at small scale,
ignoring large-scale sinks from stable modes. Examples
include the entropy cascade [38], the zonal flow paradigm [39],
the secondary Kelvin–Helmholtz instability in the saturation
of electron temperature gradient (ETG) instability [40], and
reconnection [41, 42]. Processes like the entropy cascade
describe energy transfer to small scale, where for steady state,
the fluctuation energy must be damped. The entropy cascade
provides a detailed picture of the forward cascade process in
relation to the gyroaverage, but it is worth noting that the kinetic
nonlinearity, as an advective derivative of the distribution, is
fundamentally a forward cascade nonlinearity. The zonal flow
paradigm invokes energy transfer to large scale zonal flows,
but the primary saturation of the instability, given weak zonal
flow damping, relies on zonal flow shearing, which enhances
transfer to small scales. Where large-scale stable modes have
been examined in relation to the above processes, their role has
been significant in every case. The entropy cascade is subject to
large scale damping from stable modes unless the collisionality
is very weak [43] relative to present day fusion devices [44].
Large scale stable modes are the main energy sink in zonal-
flow-regulated ITG turbulence, with zonal flows catalyzing
transfer to the stable modes [45]. The secondary Kelvin–
Helmholtz mode is a dissipative structure made up of damped
roots of the primary ETG instability dispersion relation [46]. In
each of these cases, the conventional saturation mechanisms
mentioned at the beginning of this paragraph are operative,
but the energy damping landscape is strongly modified by the
stable modes. Consequently this type of physics needs to be
considered in the context of saturation at finite β.

This overview focuses on physical processes that arise
sequentially as β is increased from very low values, and
whose underlying physics is interrelated. We begin with the
phenomenon that emerges at the lowest β, where we show
that the stochastic magnetic field in low β ITG turbulence
arises from tearing parity stable modes that are excited to finite
amplitude by the nonlinearity [34]. We next examine how
magnetic fluctuations disable zonal flows, leading to the high
β runaway. An effective island overlap criterion predicts the
threshold, which is now more appropriately referred to as the
non-zonal transition (NZT) to a new saturated state of very
large fluxes [31]. The threshold criterion shows that NZT may
occur at a critical β that is above or below that of the KBM
instability, depending on the magnitude of the temperature
gradient. In the former case, KBM grows and saturates in
an environment where magnetic activity makes zonal flows
weaker. We describe saturation of the KBM instability in both
a standard tokamak equilibrium and for the 3D equilibrium
of the Large Helical Device (LHD) [47]. Discharges in the
National Spherical Torus Experiment (NSTX) and RFX-mod,
a reversed field pinch (RFP), both operate at β values that
are larger than those of standard tokamaks. Modeling of
discharges in these devices show that the MTM is the dominant
instability [23, 25]. We also show that the MTM is unstable in
the Madison Symmetric Torus RFP [14], specifically looking
at standard-confinement-type discharges where an important
difference with the enhanced confinement discharges that
occur with current profile control is the lower magnetic shear.
In enhanced confinement discharges, recent modeling shows
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turbulence that is surprisingly electrostatic in character. The
fluctuations are density-gradient driven trapped electron modes
(TEM) [48]. Despite a β of a few percent, modes like
the MTM and KBM appear to be stable. The presence of
a large Dimits shift and strong zonal flows indicates that
the system is below the NZT threshold. The implication
is that these thresholds are higher in the RFP than in the
tokamak [48].

The fact that these discharges have a large magnetic
shear, which is stabilizing for MTM, leads us to the last
important element of this paper, an analysis of how magnetic
configuration and its magnetic field scale lengths impact
all of the processes described above. Noting that the
same set of instabilities (ITG, KBM, MTM, TEM) can all
arise in multiple magnetic configurations, comparisons across
different configurations demonstrate the effect of magnetic
configuration in the form of safety factor q, and magnetic field
scale lengths. In configurations with smaller magnetic field
scale lengths, the critical gradient thresholds for both the linear
instability and the nonlinear fluxes are raised [48]. In such
configurations the finite β thresholds both of stabilization (e.g.
ITG) and destabilization (KBM) are also raised. Moreover,
the critical β values for NZT and its large transport levels are
raised. One type of device with these properties is the RFP.
Simulations show that raising these thresholds through short
magnetic field scale lengths yields critical gradients that are
larger than those of tokamaks by a factor of 3. This suggests
that short magnetic field scale lengths are quite favorable for
maintaining steeper equilibrium profiles and greater stored
energy in finite β discharges.

This overview is finite in scope and is not intended to cover
every recent contribution from gyrokinetic simulation relating
to microturbulence at finite β. For example, investigations
involving impurities [49] or fast particle species [29, 50, 51] in
finite β plasmas are not included. In particular, [29] and [51]
illustrate that model agreement with experimental discharges
requires accounting for the complex workings of multiple
effects, in this case including the strengthening of zonal-flow
saturation relative to instability at finite β, the stabilizing
effect of fast particles, and mean sheared flows, among other
things. The generally beneficial effects ascribed to β in [29]
and [51] are consistent with past assays, which show that
benefits of higher β are eventually undone by new magnetic
phenomena like the KBM. In this overview our primary focus is
on greater understanding of finite β effects without additional
complicating factors.

2. Subdominant tearing parity modes

Many fundamental aspects of electromagnetic turbulence and
transport have been discovered by studying a finite-β version of
the Cyclone base case (CBC) parameters. Scans of β ranging
from the electrostatic limit to the KBM limit demonstrate
a significant decrease in electrostatic transport concurrent
with an increasing electron electromagnetic heat flux that
scales like β2 and becomes comparable to the electrostatic
channels as β nears the KBM limit. The electromagnetic
transport has been shown to be produced by free-streaming
electrons in the stochastic magnetic field produced by the
turbulent magnetic fluctuations [13, 28, 33, 52, 53]. The onset

of a chaotic magnetic field occurs at very low β, of order
0.1%, where the electron heat flux is still very small. An
understanding of the electromagnetic transport relies on an
understanding of the mechanisms that produce the turbulence-
driven stochastic magnetic field. In the remainder of this
section we describe those mechanisms, and the magnetic
transport that results. We do not discuss here the electrostatic
component, but it should be kept in mind that it dominates for
low β and is only surpassed by the magnetic component near
the KBM threshold.

The stochastic magnetic field of CBC ITG turbulence is an
aspect of saturation. For unstable modes to saturate, they must
couple through the nonlinearity to fluctuations that are damped,
with amplitudes adjusting themselves to achieve a balance
between energy input and dissipation. This process has long
been viewed as occurring across the wavenumber spectrum.
With instability residing in low wavenumbers perpendicular to
the magnetic field in gyrokinetic turbulence and damping at
high wave numbers due to collisions, the necessary coupling
between the low and high wavenumbers could be provided
by nonlinear energy transfer, as in the entropy cascade [38].
Under this type of scenario a perpendicular wavenumber
cascade initiated by an electrostatic instability would be
expected to involve purely electrostatic fluctuations at higher
wavenumber. However, contrary to the standard picture,
mode decompositions of the fluctuations in the CBC show
that even at low wavenumbers where the instability resides,
there are fluctuation components associated with parallel and
velocity-space degrees of freedom that are distinct from the
instability, quite unlike it, and in fact are damped [37, 54].
The net fluctuation can be decomposed into a mode basis,
e.g. the eigenmodes of the linear gyrokinetic operator or a
proper orthogonal decomposition. What these decompositions
show is that at saturation a fluctuation in the perpendicular
wavenumber range of the instability is comprised of the
dominant unstable mode and many other modes. Most of
these modes are stable. They make a large contribution to
the removal of energy that balances the instability drive, and
is not accounted for in descriptions of wavenumber cascades
[45, 55] like the entropy cascade. Some of these modes are
electromagnetic and create magnetic islands [34, 35]. It should
be noted that stable modes are excited by the nonlinearity,
and damp perpendicular wavenumber cascades irrespective of
whether the cascades are forward or inverse.

Magnetic islands are produced by modes with tearing
parity—a mode structure for the parallel magnetic vector
potential A‖ that is even for displacements along the magnetic
field measured from the outboard midplane. ITG modes
(centered at kx = 0) are characterized by ballooning
parity—odd-parity in A‖—and thus would not be expected
to produce significant magnetic stochasticity. There are
two candidates for tearing-parity fluctuations in ITG-driven
turbulence: (1) finite-kx ITG modes, which are allowed to
have a tearing-parity component, and (2) some other mode
that is intrinsically characterized by tearing parity. There
are multiple manifestations of modes in the latter category.
Tearing parity ITG and ETG modes (TITG, TETG) are
tearing-parity counterparts to the more familiar ITG and ETG
modes, sharing their most salient properties with the exception
of the parity of the mode structure. As such, they are
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Figure 1. The total electromagnetic electron heat flux spectrum (plus signs), summed over kx for β = 0.003, decomposed into contributions
from tearing modes (crosses), ballooning modes (asterisks), and all remaining fluctuations (circles) (from [34]).

not intrinsically electromagnetic and have small components
of the magnetic vector potential. Microtearing modes are
intrinsically electromagnetic tearing parity modes (i.e. they
cannot exist when β = 0), and are characterized by a
large A‖ component. Understanding electromagnetic transport
relies on identifying which of these modes produces magnetic
stochasticity and determining by which mechanism the modes
are excited.

To identify the source of the stochasticity, proper
orthogonal decompositions (POD) of the turbulence were
constructed to isolate the important magnetic fluctuations
[34]. PODs of A‖ effectively capture the dominant tearing
component and the dominant ballooning component in the
first two POD modes. The POD is flexible enough to extract
modes with slightly mixed-parity, which is characteristic of
kx �= 0 ITG modes, and can thus distinguish between ITG-like
modes with a small tearing component and other modes with a
dominant tearing component. This procedure clearly identifies
predominantly tearing-parity fluctuations as the mechanism
for the magnetic stochasticity and transport, eliminating
the ITG mode as the direct producer. A reconstruction
of the electromagnetic flux using the POD decomposition
demonstrates that the tearing-parity fluctuations produce
outward heat flux, while the ballooning-parity fluctuations
produce an inward flux (not stochastic) that is consistent with
the quasilinear properties of the ITG mode. The distinctive
spectrum that results from the superposition of these two
mechanisms is shown in figure 1.

PODs of the actual gyrocenter distribution function were
used to examine the detailed properties of the most important
tearing-parity modes. A high-amplitude POD mode was
identified that has properties similar to the corresponding linear
microtearing mode (which is stable) and dissimilar from linear
TITG and TETG modes (which are slightly unstable); the ratio
of electromagnetic to electrostatic heat flux, and the ratio of
the normalized |A‖|2 to the electrostatic potential |φ2| for both
the tearing parity POD mode and the linear MTM modes are
orders of magnitude larger than the corresponding values for
TITG and TETG modes. Moreover the A‖ mode structures
for the tearing-parity POD mode and the linear MTM mode
are virtually identical. In short, the turbulence structures that

produce the magnetic stochasticity correspond closely to stable
MTMs that are identified in the linear eigenmode spectrum.

The POD modes were also used to project out the
component of the nonlinear energy transfer that drives the
microtearing fluctuations. It was shown that coupling to
zonal ky = 0 modes was the dominant nonlinear excitation
mechanism. Further evidence of the nonlinear nature of
the electromagnetic transport is found in the early-time
dynamics of the flux components; the electrostatic fluxes
increase in the early linear phase at a rate consistent
with the dominant ITG mode growth rate, while the EM
component grows with approximately twice the ITG growth
rate, indicating a nonlinear excitation mechanism. Moreover,
in the saturated nonlinear phase, bursts of EM flux appear with
an approximately 2R/cs delay from the ES components.

The electromagnetic transport mechanism described here
is intrinsically nonlinear—i.e. it cannot be inferred in
a straightforward way from the linear properties of the
ITG modes. However, a simple empirical relationship has
been identified between the electrostatic and electromagnetic
components of the flux. The electromagnetic heat diffusivity
is proportional to β2/β2

KBM, where βKBM denotes the KBM
limit. The proportionality factor is of order unity in the cases
examined (0.92 for the CBC case, and 0.24 for a TEM case).
Thus, simple rules may be identified that allow quasilinear
estimates to be extended to this nonlinear electromagnetic
transport mechanism.

The above analysis shows that, in addition to magnetic
stochasticity at very low β, ITG turbulence deviates from
standard views of plasma turbulence in other ways. Zonal
flows can no longer be viewed as purely beneficial. Through
their role in mode coupling between the instability and stable
microtearing fluctuations, they open an additional transport
channel—the electron heat flux. Because this channel only
arises through nonlinear energy transfer it cannot be obtained
directly from quasilinear theory. It can only be related to
quasilinear theory, as above, by making use of knowledge of the
excitation spectrum of the stable tearing parity modes. Mode
analysis that accounts for the finite amplitude of stable modes
at the scales of the instability is critical for an understanding
of saturation.
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Figure 2. Potential contours in the nonlinear state of ITG turbulence. The left panel is for β = 0.7% (below the NZT threshold) and the
right is for β = 0.9% (just above).

3. The non-zonal transition

In CBC, when β increases above 0.9% (∼0.7 of the
critical β for KBM instability) gyrokinetic codes fail to
saturate at reasonable levels [30–32, 56, 57]. Because this
runaway phenomenon is common to many codes, including
gyrofluid codes [58] it is not a numerical artifact. One
idea proposed as a physical basis for this phenomenon is
that it represents a subcritical KBM instability (tertiary)
of the secondary zonal flow structure driven by nonlinear
profile corrugations of temperature and density [30]. A
careful measurement of the corrugation amplitudes near
the runaway threshold indicates that they are too small to
destabilize KBMs subcritically at this β [31]. Furthermore,
a consideration of electrostatic potential corrugations that
self consistently accompany pressure corrugations, but were
ignored in [30], shows that they can negate the effect of the
pressure corrugations through their shear.

Here we describe a set of recent discoveries that point
to the cause of the runaway phenomenon as arising instead
from the depletion of zonal flows by radial motion of electrons
streaming along strongly perturbed field lines. Zonal flows
consequently lose their ability to saturate the linear instability,
causing severely increased heat and particle flux levels. The
phenomenon is labeled the non-zonal transition [31, 57].
Simulation of nonlinear dynamics above the NZT shows a
saturated state with strongly reduced zonal flows. This is
shown in the right panel of figure 2 and compared in the left
panel with a case below the threshold.

That the reduction of zonal flows is caused by charge
loss from rational surfaces associated with streaming along
perturbed fields is demonstrated by two calculations. In
one, the radial excursion of a perturbed field is increased

until it exceeds the field-line correlation length, allowing
for irreversible charge loss. The β associated with this
condition matches the critical β for the NZT. In the second
an external radial magnetic field perturbation is applied to
a Rosenbluth–Hinton residual flow [59]. Prompt electron
losses cause the potential response to swing through zero. The
rate and its scalings are calculated from a closure theory for
the mode coupling of the external field, and agree well with
measurements from a numerical calculation of the potential
response [60]. We focus below on the critical β for the NZT.
The derivation of the threshold from field-line decorrelation
allows us to infer key scalings. From variation with driving
gradient we determine that the NZT does not occur at a set
fraction of the KBM threshold. It can be higher than the KBM
threshold or lower than the 0.9% value of βcrit for NZT in
the CBC. From the dependencies on magnetic field scales we
determine how this threshold changes in the RFP relative to
the tokamak.

The critical β for transition occurs when a field line
decorrelation criterion analogous to an island overlap condition
is met [57]. An illustration of field line decorrelation is
given in figure 3. Here, field line positions are obtained
by integration (along the coordinate parallel to the guide
field) of the perturbed magnetic field. Note that this picture
requires no resonant perturbations, which have even parity in
the magnetic potential; instead, purely quasilinear, odd-parity
radial fluctuations Bx are sufficient to bring about this process.
Starting from the inboard side (at the left of figure 3), field
lines depart from their original radial position, marked by the
unperturbed circular flux surface in black. For a correlated field
line (red), the maximum radial displacement �r is reached
at the outboard side (on the right), and the second half turn
brings the field line back to its original position, due to the
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Figure 3. Illustration of field line decorrelation. Shown in the R–Z
plane are the unperturbed flux surface in black, and two field lines
subject to some nonresonant perturbation. The red field line remains
correlated, whereas the blue one decorrelates and fails to return to
its original radial position.

aforementioned odd parity. Given a sufficiently large Bx (e.g.
due to a sizable β), it is possible for the outboard displacement
�r1/2 to exceed the radial correlation length of Bx—which is
the case for the blue field line, as illustrated in the magnified
region on the right. Decorrelation, however, means that the
onward trajectory of the field line is statistically independent
of the previous path. While for the red line, the second half turn
causes a displacement �r2/2 = −�r1/2 that cancels the first
half, returning charge to the surface, this is no longer the case
for the blue line. Instead, the field line’s displacement from
the surface is irreversible, creating a radial charge path, radial
currents, and irretrievable charge loss from flux surfaces. The
process by which such radial currents are able to short out zonal
flows is described in detail by the residual flow calculation
of [60].

The displacement �r1/2 increases with the perturbation
strength Bx . The radial correlation length λBxx decreases
moderately with β. The point where these two lengths become
equal allows irretrievable charge loss and hence yields the
observed critical β for NZT, as shown in figure 4. From
figure 4 it is straightforward to predict what happens when
the temperature gradient is increased. This gradient drives
the turbulence; consequently an increase yields a larger value
of Bx and �r1/2 for a given β. This increases the slope of
�r1/2 in figure 4, thereby decreasing the critical β for NZT.
Numerical measurements verify that a change in the crossing
point of �r1/2 and λBxx produces a like change in the critical
β. In the CBC, the critical β for NZT is below the KBM
threshold. However, for a weaker temperature gradient, the
NZT threshold can occur at a higher β than the KBM threshold.
For the General Atomics standard case [30] the gradients are
steeper than CBC and the NZT threshold occurs below 50%
of the KBM threshold.

Based on the above picture, it is possible to estimate the
critical β for the NZT transition as a function of the temperature
gradient. Relative to βKBM

crit , the instability threshold for the
KBM,

βNZT
crit

βKBM
crit

∝ 1

(ωT − ωT,crit)ξ/2
, (1)

where ωT = −(∂T /∂r)R0/T , ωT,crit is the critical gradient
for ITG instability, and 1/2 < ξ < 1 [61]. From this

Figure 4. Variation with β of the half turn radial field line
displacement �r1/2 and the radial correlation length λBxx At the
point where they cross an odd parity magnetic vector potential
fluctuation is unable to return to the surface, defining the critical β
for the NZT.

expression it is clear that near the ITG temperature gradient
threshold, the NZT critical β is above the KBM critical β.
Conversely, for a sufficiently large temperature gradient, any
system whose saturation is dependent on zonal flow activity
may undergo an NZT. Since the non-zonal transition may, in
principle, lead to very stiff limits, it is important to study its
potential role in experimental scenarios. Ongoing research is
focused on the transition between linear and saturated Ohmic
confinement regimes, as well as on high-gradient regions such
as the pedestal.

The analysis of the NZT in terms of a threshold for
field line decorrelation and the quantitative agreement between
numerical and analytical analyses of finite-β residual flow
indicate a charge loss process from electrons streaming along
perturbed field lines. This process is phenomenologically and
conceptually distinct from the nonlinear processes that charge
surfaces through turbulent Reynolds and Maxwell stresses.
Therefore, one cannot be considered the negative of the
other. The Maxwell stress has been hypothesized to partially
cancel the Reynolds stress in driving zonal flows at finite β,
thereby weakening zonal flows [39]. This is consistent with
observations of a general weakening of zonal flow strength
with increasing β [13, 28, 29] and works in a parallel sense
with the NZT. However, the strength of the turbulent stresses
varies smoothly with nonlinear amplitude, whereas the charge
loss process associated with the NZT undergoes a critical
transition. Moreover, in the residual flow calculation the
charge loss associated with NZT is treated as a response to an
impulsive force, whereas the Reynolds and Maxwell stresses
are the force. A way of thinking about the distinctness of these
two processes is provided by statistical closure theory, such as
the direct interaction approximation, where there is a turbulent
response that is quite distinct from the turbulent source, even
though both derive from the same nonlinearity [62]. Of
course, the turbulent stress and residual flow calculations have
not been carried out jointly in a mutually consistent way, so
there may be other connections. This question is presently
under consideration in gyrokinetic analyses of electromagnetic
nonlinear energy transfer at finite β [63].
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Figure 5. Spectrum of electrostatic potential 〈|φk|2〉 of the KBM
turbulence in a helical plasma. Reproduced with permission
from [64], Copyright 2014 AIP Publishing LLC.

4. Saturation of kinetic ballooning mode turbulence

In finite β toroidal plasmas, the growth of the ITG mode
decreases with increasing β because of magnetic field line
bending. Finite β ITG turbulence leads to a very high level of
transport above a critical β (NZT). On the other hand, the KBM
is destabilized at high β above another critical value, which
is larger than the critical β of NZT for the CBC tokamak,
and KBM turbulence does not become saturated in many
computational scenarios.

However, there exist cases where high β turbulence with
weak zonal flows is free from the saturation problem. When
the electron temperature gradient is small, saturation of KBM
turbulence is obtained with a physically relevant level of
transport for tokamak and helical plasmas [47, 64–66], even
when zonal flow production is weak. The weak zonal flow is
shown by the electrostatic potential spectrum in a statistically
steady state for a model of the standard configuration of the
Large Helical Device in figure 5. The amplitude of the zonal
component (ky = 0) is comparable with the dominant mode
for ITG turbulence at low β. On the other hand, the KBM
turbulence has a sharp peak, and the zonal component (ky = 0)
is much smaller than the sharp peak of the KBM. Consequently,
KBM turbulence saturation has two elements in common with
saturation above NZT: β is high, implying magnetic effects,
and zonal flows are weak.

In both the tokamak and helical plasma cases, the mode
structure along the magnetic field line plays a central role in the
saturation of the KBM turbulence. In the CBC-like tokamak
plasma, the dominant KBM has an elongated mode structure
along the magnetic field line because of fast streaming motion
of electrons along the field line. The elongated structures
acquire a twisting feature because of the magnetic shear, and
the interaction between the KBM and the twisted structure
leads to the saturation of the KBM. The twisted structure
appears in the electrostatic potential profile in the (x, y)-
plane with a high radial wavenumber in figure 6, while the
KBM is represented by the horizontal stripes. The absence
of noticeable vertical structure indicates that zonal flows are
not a significant factor in saturation. In a helical plasma
(the standard LHD plasma), the dominant KBM has a finite

ballooning angle, i.e. it has a finite radial wavenumber, which
is evident in the electrostatic potential profile in the right panel
of figure 6. Since the three-dimensional magnetic field of the
helical plasma has up-down symmetry, two oppositely inclined
modes grow with the same growth rate. When their amplitudes
become large, they interact with each other through nonlinear
mode coupling, and the convection cells of the oppositely
inclined modes shear each other, leading to saturation. Hence,
the mutual shearing between the inclined modes, which have
opposite ballooning angles, is the saturation mechanism of
KBM turbulence in high β helical plasmas. The saturation
process is qualitatively studied by evaluating the nonlinear
entropy transfer function of interactions within triads of Fourier
modes through nonlinear terms including electrostatic and
magnetic perturbations.

For comparable growth rates, KBM turbulence is less
efficient at transport than ITG turbulence, provided the
turbulence undergoes a self interaction associated with
elongated structure along the magnetic field [66, 67]. (The
self interaction can be turned off, and the transport efficiency
raised, by extending the simulation box along the field line.)
When the self interaction limits transport, weaker zonal flows
offset the effect: the ion heat flux for KBM is given by
QKBM

i = 3n0Tiνti ρ
2
i /L

2
n, while for ITG it is given by QITG

i =
5n0Tiνti ρ

2
i /L

2
n. The fluxes are comparable, with a slightly

higher numerical coefficient for ITG.

5. Microtearing instability in tokamaks and RFPs

The microtearing mode (MTM), which is linearly stable for the
CBC, has been predicted to be unstable for experimental core
and edge conditions in the tokamak, the spherical tokamak,
and the RFP. In conventional tokamaks MTM is typically
weaker than ITG or TEM instabilities (e.g. [19]). However,
for spherical tokamaks like NSTX and MAST, numerical
solutions of gyrokinetic models using GYRO often predict the
instability to be dominant in the core of high β H-mode plasmas
[68], and to share some similarity to slab-theory predictions
regarding β, electron temperature gradient, and collisionality
[69]. Solutions of gyrokinetic models have identified two
branches of the MTM instability, one which requires collisions
and whose growth rate decreases with collisionality [71], and a
collisionless branch [19, 21, 25, 48, 70]. For NSTX parameters
the linear growth rate has a temperature-gradient threshold
of a/LTe

∼ 1.3 − 1.5. The transport fluxes grow sharply
above a/LTe

= 2, indicating a modest shift of the nonlinear
threshold relative to the linear threshold. Because the mode
is electromagnetic with a tearing parity mode structure there
is also a critical threshold in β near a value of 4.5%. Finite
collisionality is required for instability (with Zeffνei/ω not too
large or small). Consequently MTM instability in NSTX is
on the collisional branch. For this branch the time-dependent
thermal force is important for instability, making the growth
rate vanish in the limit of zero collisionality [71].

Fluxes from nonlinear simulations follow the same trends
as the linear stability calculations, provided the saturated
amplitudes (δB/B) are sufficiently large to ensure the onset
of stochastic field lines. The electron heat flux, like
that of the subdominant microtearing mode in CBC ITG
turbulence, is well represented by magnetic flutter, with χEM

e ∼
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Figure 6. Color contours of electrostatic potential φ at the steady state of KBM turbulence in the CBC (left) and the standard LHD (right)
with ηe = 0. Reproduced with permission from [47] (left), Copyright 2013 AIP Publishing LLC and [64] (right), Copyright 2014 AIP
Publishing LLC.

v‖,eδBr . This follows the Rechester–Rosenbluth prediction
[52] provided islands overlap, i.e. island widths exceed the
spacing between rational surfaces. It is not clear what sets
overall saturation and the scaling of δBr in the gyrokinetic
models, although there is a prediction from fluid theory that
damped modes are excited to a sufficient level to provide
a significant sink for saturation [72]. The dependence of
instability on collisionality yields an electron heat flux that
scales with the electron collision frequency νe to the first power.
This is consistent with global confinement trends in NSTX that
indicate an inverse scaling of confinement time with ν∗.

The MTM is also important in the RFX-mod RFP,
where linear GS2 simulations performed for the experimental
geometry show that MTMs are typically the fastest growing
instabilities across the transport barriers occurring during the
single helicity state [75]. For a selected set of RFX discharges
the quasi-linear estimate of the electron conductivity, χe ∼
(ρe/LTe

)vth,eLc, turns out to be in good agreement with the
experimental values [76], making MTM turbulence a major
player for electron heat transport in the helical regimes. For
the typical values of β in RFX-mod, MTM destabilization is
obtained above a/LTe

∼ 2.5–3 in the plasma core, an easily
accessible value during the helical states. Work is in progress
to extend the previous conclusions to a fully helical description,
by means of the code GENE coupled to the helical VMEC
equilibria of RFX.

Investigation of MTM stability covering a large parameter
space has revealed that the collisionless branch of MTM is
predicted to occur for certain experimental conditions often
encountered in the RFP configuration, even neglecting the
trapped electron dynamics. This branch does not require the
time-dependent thermal force, and is therefore distinct from
the branch of the MTM that appears in NSTX models. The
decisive role of the curvature and grad-B drifts in destabilizing
the mode is evident especially in the collisionless limit, as
described in [25] and [48]. Retaining electrostatic potential
fluctuations is always found to be destabilizing. An instability
calculation for this new MTM branch has been undertaken,
using a high frequency expansion for the propagator of the
gyrokinetic equation in the collisionless regime. Temperature
gradient free energy is accessed through the electron grad-
B/curvature drift. Typically this drift has been neglected

in analytic instability calculations of MTM growth, but in
the RFP and spherical tokamak it is larger than its standard
tokamak counterpart. In the RFP, the drift is larger by a factor
of the aspect ratio. Instability requires a finite electrostatic
potential. The mode represents the collisionless limit of a
semicollisional tearing instability described previously [77].
However, besides the drifts, there is another destabilizing
mechanism, which arises due to the mutual balance between
magnetic shear, density gradient and electron temperature:
a positive growth rate is accessible in the collisionless limit
even without curvature and grad-B drifts in ωd , provided the
density profile is flat; again electrostatic potential fluctuations
are destabilizing. Such results have been recovered with a
more practical drift kinetic model [25], showing a qualitative
agreement both on the role of the magnetic drifts and of
density/safety factor profile. Collisionless MTM has also
been found near the pedestal of spherical tokamaks [73, 74].
In particular, [73] also invokes magnetic drifts as a possible
explanation, although with particle trapping.

An important aspect of microtearing instability in the RFP
is its dependence on magnetic shear. The magnetic shear of
the RFP is large and negative, and tends to increase with minor
radius and the RFP pinch parameter  = 〈Bθ 〉wall/〈Bφ〉vol.
The growth rate decreases as the magnitude of the magnetic
shear becomes larger. This is seen in figure 7, which shows
linear GYRO runs for an RFP equilibrium model known as
the toroidal Bessel function model [78]. The growth rate is
shown as a function of collisionality for three values of the
radius, with corresponding shear values ŝ indicated. Here
ŝ = (r/q)(dq/dr)−1, where q is the safety factor. It is
readily apparent that as the radius increases the magnetic shear
becomes more negative and the growth rate decreases. It
should be noted that while the expression for ŝ is not accurate
near the reversal surface where q vanishes, ŝ is accurate to
within 35% for the radial values of figure 7.

These plots also show the collisional and collisionless
branches of the MTM, and suggest that the collisionless branch
is more strongly stabilized by shear than the collisional branch.
In figure 7 the two branches are most distinct at r/a = 0.5
(ŝ = −0.7), where different shapes are seen in the growth rate
on either side of ν = 0.1. This feature appears because only the
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s = 0.4

s = 0.7

s = 1.3

Figure 7. Growth rates for MTM as a function of collisionality for
the toroidal Bessel function equilibrium. Three radial values are
shown, with corresponding values of the magnetic shear. Adapted
with permission from [14], Copyright 2013 AIP Publishing LLC.

growth rate of the fastest growing mode is plotted. Different
branches are dominant on either side of the break. (A break, but
not a discontinuity, also appears in the frequency at the same
value of ν, as seen in figure 8 of [14].) The collisional branch
corresponds to the peaked feature near ν = 2. For ν < 0.2 the
collisionless branch takes over, and is relatively independent
of ν down to the lowest colisionalities shown. The growth
rates of both branches decrease as the shear becomes more
negative, but the decrease is more marked on the collisionless
branch. At ŝ = −1.3 the growth rate of the collisionless branch
has become less than 0.1 and is not seen in figure 7, whereas
at ŝ = −0.4, it becomes as large as the growth rate of the
collisionless branch at its peak.

6. Microturbulence in MST

Prior analysis of microtearing instability has addressed
specific discharges for RFX-mod, but not for the Madison
Symmetric Torus (MST). While MST values for β and electron
temperature gradient LTe

can lie above thresholds, those
thresholds have only been calculated for generic equilibria such
as the toroidal Bessel function model [78]. We consider here
specific MST experimental discharges with reduced tearing
mode activity, achieved by flattening the current profile with
pulsed poloidal current drive (PPCD). These discharges are
selected because, unless tearing modes are reduced, their
dominance of microturbulent fluctuations make the latter
unobservable experimentally. Indeed, recent observations in
PPCD plasmas using the laser interferometry diagnostic, show
for the first time a distinct feature in the fluctuation spectrum
that is independent of global tearing modes and the cascade
to smaller scale that they drive [80]. PPCD discharges have a
high value of , for which the toroidal Bessel function model
breaks down. To accommodate PPCD equilibria the circular
equilibrium model of GENE has been modified with a form
that accounts for the comparable values of the toroidal and
poloidal field components and the radial variation of toroidal
field [48]. The higher values of  in PPCD result in higher
magnetic shear [78], with a pronounced effect on instabilities
and turbulence.

Figure 8. Growth rate, heat fluxes, and particle flux of TEM
turbulence as a function of density gradient for an MST discharge of
500 kA. Straight-line fits have been applied to the fluxes, and a cubic
fit to the TEM portion of the linear growth rate curve. The onset of
the nonlinear fluxes occurs at R0/Ln ≈ 37, roughly a factor of 3
greater than the linear threshold of R0/Ln ≈ 13. Reproduced with
permission from [48], Copyright 2015 AIP Publishing LLC.

Linear and nonlinear gyrokinetic simulations of two MST
PPCD discharges, with 200 kA and 500 kA, draw equilibrium
fields from MSTFit, electron temperature profiles from
Thomson scattering and soft-x-ray tomography, and density
profiles from far-infrared interferometry. Ion temperature
profiles are not measured, so the GENE simulations assume
that the ion temperature profile has the same shape as the
electron profile with a peak value equal to 0.4 of the peak
electron temperature. Despite β values ranging from 0.1%
to 6.5%, unstable fluctuations, which are present in the edge
(r/a > 0.6), are electrostatic in character: while producing a
finite magnetic vector potential, its parity along the field line
is odd. Moreover the growth rate of these fluctuations has
little or no dependence on β over the range 0.1% < β < 6%.
Despite operating at a β that is considered high in the context
of tokamaks, there is no MTM, KBM, or NZT. We comment
specifically on the latter below, where we describe the presence
of strong zonal flows in the nonlinear phase. The ratio of
normalized density gradient to temperature gradient can vary
strongly in PPCD discharges of different current, although not
in a systematic way. The 200 kA discharge had a steeper
temperature gradient than density gradient. On the basis
of frequency, growth rate scalings with gradients, and mode
structure, the fluctuations in the 200 kA discharge are identified
as ITG at most radial locations. The 500 kA discharge has
a steeper density gradient than temperature gradient, and its
fluctuations are identified as TEM. Nonlinear simulations of
the 500 kA discharge have a large level of zonal flows and
a strong Dimits shift. Figure 8 shows an electron density
gradient scan of the linear growth rate and nonlinear fluxes for
electron heat, ion heat, and particles. The transport fluxes have
a critical density gradient that is 3 times as large as the threshold
for linear instability. This is considerably larger than the
tokamak upshift of 1.5 at a similar β. The experimental density
gradient is near the nonlinear critical gradient, suggesting that
TEM may be setting the profile in the region where it is active.
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The heat and particle fluxes of figure 8 are an order
of magnitude lower than inferred fluxes in the 500 kA MST
discharge. This discrepancy must be assessed in concert
with other key features of the simulations—the large zonal
flows observed in electrostatic potential contours, the large
impact on transport as quantified by the Dimits shift, and
the quiescent state of resonant magnetic fluctuations. In
the context of section 3 this combination of features typifies
plasmas well below the NZT. Why, then, are the experimental
fluxes so high? The answer to that question is found in the
fact that PPCD does not completely remove tearing mode
activity. Magnetic fluctuations measurements in PPCD show
that magnetic activity persists across the toroidal mode number
spectrum, albeit at reduced level [79]. This residual level of
resonant fluctuations and magnetic stochasticity arises from
tearing modes and is not present in the GENE microturbulence
simulations. Given the sensitivities documented in section 3 of
fluxes on zonal flows, and zonal flows on magnetic fluctuations,
a meaningful comparison of experimental and numerical fluxes
requires that the stochasticity of the residual tearing modes be
modeled in the simulations.

To address this issue an artificial Gaussian perturbation of
A‖ was introduced in the simulations. The perturbation had
kx = 0 and ky = 0.2, making it resonant in Bx . The amplitude
was tuned so that its resultant magnetic diffusivity matched
experiment with a value of Dm ∼ 10−8. This is representative
of the experimental diffusivity, although values are known only
to within fairly large error bars. The magnetic perturbation
introduced a small electromagnetic heat flux of order 3 m2 s−1.
More importantly, it significantly reduced the zonal flows,
and raised the electrostatic heat flux an order of magnitude
to 25 m2 s−1. This exercise illustrates the importance of
accurately modeling the residual stochasticity from tearing
modes, while at the same time providing confirmation of the
conclusions of section 3 about the effect of magnetic turbulence
on zonal flows.

7. Effects of magnetic geometry

The conspicuous absence of microscale magnetic turbulence
and a zonal-flow disabling NZT in gyrokinetic modeling of
MST PPCD discharges leads us to examine the role of magnetic
geometry on critical gradients and critical β values, and to
contrast RFP and tokamak scalings. In toroidal geometry the
poloidal and toroidal fields vary on the minor and major radius
scales respectively. For tokamaks Bφ 	 Bθ , and for standard
aspect ratio the scale lengths of the magnetic field variation and
connection length are of order the major radius. In the RFP the
poloidal and toroidal fields are the same order. Scale lengths
and the connection length are of order the minor radius. The
safety factor is smaller than ∼0.2 and vanishes near the edge
where the toroidal field reverses direction. These differences
tend to affect stability and saturation in a way that uniformly
pushes electromagnetic turbulence to much higher β for the
RFP relative to the tokamak.

Consider first the gradient thresholds for both low and high
β instabilities in the RFP. Gradient scans for ITG, MTM, and
TEM show that the critical gradients for the RFP, measured
in r/Lcrit , fall in the same narrow range of 3–4 as those of
the tokamak, with the latter measured in R/Lcrit . Here r is

the minor radius of the flux surface of interest. Consequently
critical gradients for these instabilities are higher in the RFP
than in the tokamak by a factor ∼ R/r , i.e.

1

LcritRFP

=
(

R

r

)
1

LcritTok

, (2)

where Lcrit is a density or temperature gradient scale length.
This is consistent with differences of magnetic field scale
lengths through thresholds for toroidal drift wave instabilities.

We consider next critical beta values for the thresholds
of a variety of magnetic fluctuation effects. We recall that
for the tokamak CBC the critical β for KBM instability and
the ideal MHD β limit, usually called the high-n β limit, are
very close (βKBM

crit ∼ 0.9βMHD) and track each other. For
this reason both limits are used in the literature to mark the
onset of electromagnetic modes. For CBC βNZT

crit = 0.7βKBM
crit ,

but as we have shown, changing gradients raises or lowers
βNZT

crit relative to βKBM
crit . In the RFP we anticipate that all

critical β values will shift upward, in part because of magnetic
shear. Familiar formulas for magnetic shear give the shear
scale length as LS = qR/ŝ, where the shear parameter ŝ is
given by ŝ = (r/q)dq/dr . These expressions are derived
for tokamak geometry because they assume that Bφ 	 Bθ .
Except very near the magnetic axis they are not appropriate
for the RFP. In the outer part of the plasma where the gradients
are strongest and instability growth rates are largest these
expressions overestimate the strength of the shear. This is most
evident at the reversal radius where q = 0, yielding ŝ → ∞
and LS = 0. In reality the shear remains well behaved and
finite across the reversal radius and LS does not become zero.
Appropriate magnetic shear parameters for the outer part of
an RFP plasma are derived by expanding k‖ about a rational
surface, just as is done to derive the tokamak parameters. For
the RFP,

ik‖ = i

|B|
[
Bφn

R
− Bθm

r

]
= i

Bθ

r|B|
[
Bφrn

RBθ

− m

]
. (3)

We assume that Bθ , which is near a maximum, is slowly
varying relative to Bφ , which is monotonically decreasing. We
therefore treat Bθ as constant and expand Bφ(r) in a Taylor
series about the rational surface that is resonant with m and
n. The lowest order term Bφ(rs)n/RBθ cancels with m on
account of the resonance, and the next order term yields

ik‖ ≈ (r − rs)
in

r

dq

dr
= ikφ

(r − rs)

LSRFP

, (4)

where
LSRFP = r

ŝRFP
, (5)

and

ŝRFP = R
dq

dr
. (6)

We note that ŝRFP is finite and well behaved at the reversal
surface and that LSRFP is nonzero. However, it remains true
that magnetic shear in the RFP is stronger.

We quantify the change with the ratio of shear scale
lengths, which from the above formulas is

LSTok

LSRFP

= qTok

(
R

r

)2 dqRFP/dr

dqTok/dr
∼ q0RFP

(
R

r

)2

, (7)
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where q0RFP is the safety factor on the axis. The large
contribution of the square of the aspect ratio is partially offset
by the safety factor, which is less than unity. However for
typical values the shear scale length ratio has a magnitude
comparable to the aspect ratio.

A critical β value governs the stabilization of ITG, which
is adversely affected by magnetic fluctuations. This critical
β is raised in the RFP geometry. A calculation of the
stabilizing effect of self-consistent perpendicular magnetic
field fluctuations at finite β leads to a critical β estimate
given by

β � εnε
2
t τ

2[1 + (εt/q0)
2]−1q−2

0 [(τ + 2εn)(τ + 1) + τ 2ηe]−1,

(8)

where εn is the ratio of the density to magnetic field scale
length, εt = r0/R0, τ = Te/Ti , and ηe = d ln Te/d ln n0.
This expression has complicated dependencies, but yields a
threshold for ITG stabilization that is higher in the RFP by a
factor that is at least comparable to the aspect ratio. This is
consistent with ITG stability analysis from gyrokinetics [14].

The critical β for NZT in the tokamak is 0.9% for the
Cyclone base case. The RFP gyrokinetic modeling exercises
described in the previous section showed no NZT up to a β

of 6.5%. The critical β for NZT has been estimated for the
tokamak and can be modified for the RFP as follows. In
the edge where microinstability is active, the RFP connection
length has a factor r/q0R0 relative to the tokamak connection
length; ωT has a factor r/R0. Assuming that the radial
magnetic correlation length does not change significantly from
RFP to tokamak, the critical β for the NZT in the RFP relative
to the tokamak goes as

βNZT
crit |RFP

βNZT
crit |Tok

∝
(

R0

r

)1+ξ/2

q0|Tok. (9)

Because the onset of many electromagnetic effects tracks
the onset of KBM instability, we examine how it scales
with RFP parameters. For tokamaks the critical β for KBM
instability typically falls in the range 0.6% to 2%. We argue
that the critical β increases markedly in the RFP due to high
magnetic shear and low safety factor. We assume that the
critical β for KBM occurs at a significant fraction of the critical
β for ideal ballooning, as it does in the tokamak. We use the
plasma ballooning parameter

αMHD = βq2[R0/Ln + R0/LTe
+ (R0/Ln

+R0/LTi
)Ti/Te], (10)

and take the tokamak threshold for the critical MHD ballooning
limit, αcrit

MHD = 0.6ŝ, as a proxy, however using the expression
ŝRFP = Rdq/dr that is appropriate for the magnetic shear of
the RFP in the outer part of the plasma. The critical β from
this rough estimate is

βKBM
critRFP

∼ 0.6
R/r

q[R0/Ln + R0/LTe
+ (R0/Ln + R0/LTi

)Ti/Te]
,

(11)

which falls between 25% and 250%, depending on the
parameter values of αMHD.

We see that a variety of scalings affects the ratios of
critical gradients and critical β values, but that generally the

RFP values are larger than tokamak values by a factor that
often is comparable to the aspect ratio. This increase, which
allows steeper gradients, better confinement, and higher β in
the RFP, applies to microinstability, and can be expected to
affect microscale modes whether or not the plasma is subjected
to PPCD. However, absent PPCD, global tearing modes, which
are not subject to the above effects, dominate transport and set
profiles, and the existence of favorable conditions for having
reduced microturbulence is irrelevant. Only when global
tearing mode activity can be suppressed, do the advantages
of RFP geometry for microinstability become important.

8. Conclusions

Operating magnetic confinement devices at high β modifies
the landscape of confinement-limiting instabilities, saturation
mechanisms, and transport. New instabilities in the form
of KBM and MTM arise, and key linear and nonlinear
properties have been described, particularly for the spherical
tokamak, the RFP, and helical devices. We show that KBM
turbulence is able to saturate without significant zonal flows
through the development of nonlinear structures with different
forms in the tokamak and helical cases. At low β, ITG
turbulence, which saturates by nonlinearly exciting damped
modes, excites stable tearing parity modes. These break
magnetic surfaces and produce magnetic fluctuation driven
electron heat transport. Because the transport has no linear
relationship with the instability driving the turbulence, its flux
is intrinsically nonlinear. The presence of such magnetic
fluctuations in ITG turbulence interferes with zonal flows
above a critical β, leading to the non-zonal transition and a
state with very large fluctuation levels. These finite β effects
are generally adverse to good confinement. However, we also
show that in configurations with high magnetic shear and low
q like the RFP, the onset of these effects occurs only at higher
critical gradients and higher β.

These studies show that saturation at finite β has nuanced
behavior and complex feedback loops. As shown by the
saturation structures of KBM and the nonlinear excitation
of stable tearing parity modes in ITG turbulence, saturation
must involve modification of the linear state, which can cause
transport that is more a product of the saturation mechanism
than the linear instability. The complexities of saturation lead
to a situation where nonlinear structures understood to benefit
confinement (specifically zonal flows), are only beneficial
for one transport channel (ions), but simultaneously bad for
another transport channel (electrons). Moreover, structures
such as zonal flows can succumb to secondary effects they
help create—in this case stable tearing parity modes that are
catalyzed by zonal flows, but, at a critical β, enable charge
loss from rational surfaces, thereby disabling the zonal flows.
When this happens saturation must resort to more inefficient
channels, raising fluctuation levels and transport rates.
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